ME-429 Problem set 2 2024-03-06

Problem 1. Mixed Nash equilibria, admissibility of equilibria

Harry and Sally plan to go on a date but do not recall where they agreed to meet. It is way before cell phone
time so they cannot communicate with either to check the plan either. Sally (player 1) prefers to go watch a
Soccer match, whereas Harry prefers to go to see an Opera. They do prefer going to the same event over each
of them going to their individual favorite event. Considering these, the payoff matrix is as follows:

Soccer  Opera

Soccer (a,b) (c,c)
Opera [(d,d) (b,a)}

a) Based on the above description, what is the relation between a, b, c,d?
b) What are the pure strategy Nash equilibria?

c) Consider the case in whicha = 3,b =2,c =1,d = 0. Compute the mixed strategy Nash equilibrium. What
is the probability of players coordinating and attending the same event in the mixed equilibrium?

d) Which of the equilibria computed in the previous part are admissible?

Bonus: read about correlated equilibrium, for example, in Section 2.2 of Fudenberg & Tirole. Discuss how
correlation can ensure a payoff higher than any of the above Nash equilibria.

Solution:

a) Each individual preferring their own event gives us a > b. Further, we have a > d and a > ¢ from the fact
that both Harry and Sally would prefer being together than going to separate events. b > ¢ arises from the
players’ preferences of being with each other over going to their individual favorite event and ¢ > d arises
from the players’ preference of events if they don’t go to the same one. Thus, we havea > b > ¢ > d.

b) The pure Nash Equilibria are (soccer, soccer) and (opera, opera). Note the payoffs J1(soccer, soccer)= a,
J2(soccer, soccer)= b. If Sally deviates, her payoff becomes J1(opera, soccer)= d < a. Thus, she cannot
increase her payoff through unilateral deviation. Similarly, if Harry deviates, his payoff becomes J2(soccer,
opera)= ¢ < b. Thus, he cannot increase his payoff through unilateral deviation. We can similarly show that
(opera, opera) is a pure Nash Equilibrium, and that no other pure Nash Equilibria exist.

¢) We use the result from class on computing completely mixed Nash Equilibria:

Az* = p*1 172" =1 (0.1)

y*'B=q"1 1Ty =1.
H * * 1T * * 1T H * 1 oo H * 3
Letting z* = [z;,1—2z;] and y* = [y;,1—y;] , (0.1) gives us z; = ;. Similarly, (0.2) give us y; = 2.

Substituting yields p* = g* = % Hence, a mixed Nash Equilibrium for the problem would have Sally attending
the soccer game with probability % and Harry attending the soccer game with probability %. This tells us the
probability of both Harry and Sally attending soccer is } x 2 = -3 and the probability of both Harry and Sally

attending opera is 2 « I = 3. Thus, they would coordinate = + 2 = 2 < 1 of the time.

L

Only the pure Nash Equilbria are admissible, since neither (3, 2) or (2, 3) is better than the other. The mixed
Nash Equilibria is not admissible, since (3,2) = (£, 3) and (2,3) = (3

Problem 2. Football game

Two football teams, called Team R and Team C, will soon play a match against each other. A football fan wants
to use Game Theory to guess the strategy that the two teams will use at the beginning of the game. Both teams
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have used offensive (O), balanced (B), and defensive (D) strategies in recent games. The fan estimates that,
depending on the initial strategy used, the goal difference in favor of Team R will be as follows:
C (minimizer)
o B D
ol 2 2 2
R (maximizer)s | 3 4 -2
p |1 3 -1

a) Dominant strategies: Does the football game problem have a dominant strategy equilibrium? If so, deter-
mine it. Otherwise, explain why it does not exist.

Solution: The dominant strategy of team C is D. Then, the dominant strategy of team R is O. Thus, the
dominant strategy equilibrium of the football game is (O, D).

b) Pure strategies: Does the football game problem have a saddle-point equilibrium in pure strategies? If so,
determine it. Otherwise, explain why it does not exist.

Solution: The security strategy of player R is:

arg max min __a; =arg max ( min (2,2,2), min_ (3,4,-2), min (1,3,—1))

ie{0,B,D} je{0.B,D} ie{0,B.D} \ je{O,B,D} j€{0,B,D} je{0,B,D}
=arg max (2,-2,-1)=0
gie{o,B,D}( )

The security strategy of player C is:

arg min max gz =arg min ( max (2,3,1), max (2,4,3), max (2,—2,—1))

je{0,B,D} ie{0,B,D} je{0,B,0} \ ie{0,B,D} ie{O,B,D} je{0,B,D}
= ar min (3,4,2)=D
gie{O,B,D}( )

By Slide 34 of Lecture 2 (O, D) is the only security strategy, and thus (O, D) is a saddle-point equilibrium
(Nash equilibrium). All saddle-point equilibria of a zero-sum game have the same value V*, in this game

Vi=V=V=2

The only other outcomes with value 2 are (O, O) and (O, B) but they are not saddle-point equilibria because
in both cases team R has an incentive to switch its strategy.

¢) Mixed strategies:

» What mixed strategy does Team R need to play so that the outcome of the game becomes independent
of the strategy/ies played by Team C?
Solution: Team R needs to play y = (1,0,0) € Y to ensure that the outcome of the game becomes
independent of the strategies played by Team C.

+ Find all saddle-point equilibria (pure and in mixed strategies).
Solution: From b) we know that (O, D) is the unique pure saddle-point equilibrium. Furthermore, by
Bauer’s maximum principle all mixed saddle-point equilibria are a convex combination of the pure saddle
point equilibria. Since there only exists a unique pure saddle-point equilibrium is follows that there are no
other mixed saddle point equilibria.

Problem 3. Saddle point equilibria in zero-sum games

Consider a zero-sum game with cost matrix A € R™*". Let V,, and V, denote the mixed security strategies for
player 2 (maximizer) and player 1 (minimizer) respectively.
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a) Prove the following statement provided in the lecture notes:
A zero-sum game has a mixed saddle-point equilibrium if and only if

V., =maxminy Az = min maxyTAz Vnm
zEZ yeY yey zez

Hint: we proved the analogous result for pure strategies during the lecture.

b) In class, we derived the linear program corresponding to player 1, the minimizer. Using the same approach
as the lecture notes, derive the linear program for finding the mixed Nash equilibrium for player 2, the
maximizer.

Remark: Read about duality in optimization and in particular, in linear programming. You can show that the
linear programs for the minimizer and maximizer are dual linear programs.

Solution:

a) Suppose (y*,z*) is a saddle point. Then we have:
(y*)TAZ S (y*)TAZ* S yTAZ*
forally € Y and z € Z. By definition of the maximum, we have:

TAz* = TAZz* < TAz=V
(v*) Az ;nmy z* Tgag}%lgy z=V,

Similarly, by the definition of the minimum we have:

(y*)TAz" = max(y )TAz > minmaxy Az =V,
YEY 262

Hence, Vo < V.. By the Min-Max property for general functions, we have that V,, < V. Thus, we must
have V, = V,,.
Conversely, suppose that V,,, = V.. Then

V. =maxminy' Az = min
-—m zeZyE)iy yeyy

where z* maximizes minycy y " Az. Similarly

V;n=minmaxy 'Az = max(y )TAz,
yEY 262

where y* minimizes max,cz y " Az. By definition of the maximum and the minimum we must have that

m|)r}yTAz < (y*)TAz" < max(y )TAz.
ye

Since the expression on the left is V,, and the one on the right is V,, which are equal by hypothesis, we
have

miny "Az* = (y*)TAz* = max(y*) Az
yey ZEZ

and so
(y*)TAz <max(y*)'Az = (y*)"Az* =miny TAz* <y "Az*
zeZ yey

forally € Y and z € Z. Hence, (y*,z*) is a saddle point point equilibrium.
b) Consider V. We have

= max min Z;a)
= max min Zz/-a,-,-,

zeZ i
j=1"
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where the last equality follows from the result that the optimum over a simplex is at one of its vertices. This
is equivalent to the following linear program:

V,
T
subjectto Az > 1V,
zeZ, VheR.

where 1 is the column vectors of ones.

Additional problems: Solve Exercises 3 and 4 in the slides 01-Static games.pdf, and Exercise 1 in the slides
02-Zero-sum games.

Solution of Exercise 3 (Properties of mixed strategies and payoffs)

a) Aset X C R"is convex if for any x,y € X and « € [0, 1] the following holds:

ax+(1—a)y € X.

b) The set of mixed strategies ) is defined as:

n
y={yz}/i=1, YIZO}-
i=1

Suppose any x,y € YV and « € [0, 1]. First, we verify:

n

n n
ZO[X,’ + (1 — a)y; = OzZX; + (1 — Oz)zy/
i=1 i=1

i=1
=a+(1—a)
=1.

Furthermore, for i = 1,..., n, it holds that ax; + (1 — )y; > 0 since «, (1 — ), X;,¥i > 0. Thus, X is a convex
set.

c) Let ¥ C R? be a convex set. A function f : X — R is convex if for any x,y € X and « € [0, 1] the following
holds:

flax + (1 — a)y) < af(x) + (1 — &)f(y).

d) Assume z is fixed and define x = Az The function J;(y,z) = y TAz = y " x is linear in y by definition of linear
functions (see below for a reminder). Linear functions are convex (you should verify this) and thus J;(y, 2)
is a convex function in y when z is fixed.

Recall, given two linear spaces U, V over the field R , a function f : U — V is linear if

Yuy,Us € U,()é1,0[2 €R, f(a1U1 +C!2U2) = Ck1f(U1) +042f(U2).

Solution of Exercise 4 (Computing mixed Nash equilibria in matching pennies)

Consider the penalty kick:
Left Right

Left 1,-1 (-1,1)
Right [(1,1) (1,-1) }

At the Nash equilibrium the optimal strategy z* = [z;,1 — z;]" has to respect the condition Az* = p*1, where

A={11 11]
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We obtain the two following equations:

zi —1+zf =p*,

*

* *
—zi+1—-z{ =p*.

The solution of the system is p* = 0 and z} = 1. Thus the optimal strategy is z* = [}, 3]T. Due to the symmetry

of the game the optimal strategy y* is equal to z*. Thus the mixed Nash equilibrium is ([3, 3]7,[3,2]"). To
double check, we can control that the conditions for being a mixed Nash equilibrium holds. The pair of mixed
strategies y* € Y and z* € Z is a mixed Nash equilibrium if

(y*)TAZ* 2 yTAZ*, vy c y,
and if
() Bz* > (y*) Bz, VzeZ,

where

The mixed Nash equilibrium is

since

Goa(0 ()6 D)0 w(g). ey

Analogous computations show that (y*) " Bz* > (y*) " Bz also holds for z* and all z € Z.



